Code
# Read more about micropip at https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install
import micropip
await micropip.install("faker")
import gradio as gr
from faker import Faker
import pandas as pd
fake = Faker()
data_types = {"Name": fake.name, "Address": fake.address, "Email": fake.email,
"Phone": fake.phone_number, "Job": fake.job}
def generate_data(data_type, count):
data = [{"#": i+1, "Data": data_types[data_type]()} for i in range(count)]
return pd.DataFrame(data)
demo = gr.Interface(
fn=generate_data,
inputs=[gr.Dropdown(list(data_types.keys())), gr.Slider(1, 10, value=3, step=1)],
outputs=gr.Dataframe(wrap=True),
)
demo.launch()
# Read more about micropip at https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install
import micropip
await micropip.install("faker")
import gradio as gr
from faker import Faker
import pandas as pd
fake = Faker()
data_types = {"Name": fake.name, "Address": fake.address, "Email": fake.email,
"Phone": fake.phone_number, "Job": fake.job}
def generate_data(data_type, count):
data = [{"#": i+1, "Data": data_types[data_type]()} for i in range(count)]
return pd.DataFrame(data)
demo = gr.Interface(
fn=generate_data,
inputs=[gr.Dropdown(list(data_types.keys())), gr.Slider(1, 10, value=3, step=1)],
outputs=gr.Dataframe(wrap=True),
)
demo.launch()